Skip to content

Heap Sort

alt text

StepTime Complexity
Build Max HeapO(n)
Extract Max n timesO(n log n)
Total Time ComplexityO(n log n)
// C++ program for implementation of Heap Sort using vector
#include <bits/stdc++.h>
using namespace std;
// To heapify a subtree rooted with node i
// which is an index in arr[].
void heapify(vector<int>& arr, int n, int i){
// Initialize largest as root
int largest = i;
// left index = 2*i + 1
int l = 2 * i + 1;
// right index = 2*i + 2
int r = 2 * i + 2;
// If left child is larger than root
if (l < n && arr[l] > arr[largest])
largest = l;
// If right child is larger than largest so far
if (r < n && arr[r] > arr[largest])
largest = r;
// If largest is not root
if (largest != i) {
swap(arr[i], arr[largest]);
// Recursively heapify the affected sub-tree
heapify(arr, n, largest);
}
}
// Main function to do heap sort
void heapSort(vector<int>& arr){
int n = arr.size();
// Build heap (rearrange vector)
for (int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
// One by one extract an element from heap
for (int i = n - 1; i > 0; i--) {
// Move current root to end
swap(arr[0], arr[i]);
// Call max heapify on the reduced heap
heapify(arr, i, 0);
}
}
// A utility function to print vector of size n
void printArray(vector<int>& arr){
for (int i = 0; i < arr.size(); ++i)
cout << arr[i] << " ";
cout << "\n";
}
// Driver's code
int main(){
vector<int> arr = { 9, 4, 3, 8, 10, 2, 5 };
// Function call
heapSort(arr);
cout << "Sorted array is \n";
printArray(arr);
}